
CSSE 220

Interfaces and Polymorphism

Check out Interfaces from SVN

Object-Oriented Programming

• The three pillars of Object-Oriented
Programming

– Encapsulation (already covered)

– Inheritance (we will partly cover it today)

– Polymorphism (also covered today)

Interfaces – What, When, Why, How?

• What:

– Code Structure used to express operations that
multiple class have in common

– No method implementations

– No fields

• When:

– When abstracting an idea that has multiple,
different implementations

Interfaces – What, When, Why, How?

• Why:

– Provide method signatures and documentation

– Create a contract that someone must follow

• Client Code Reuse, for example, Java Event Handlers

• How:

public interface InterfaceName {

//method definitions

//We’ll look more closely at the syntax in a later slide

}

Interface Types: Key Idea

• Interface types are like contracts
• A class can promise to implement an interface

– MUST implement every method

– Client code knows that the class will have those methods
• Compiler verifies this

– Any client code designed to use the interface type can
automatically use the class!

• Interfaces help to reduce coupling by tying your design
to the interface and not the class implementation.
– A new interface implementation can be switched out for

the original without changing the rest of the code
Q1

Interface Types can be used anywhere
that a class type is used.

• Once an interface is defined, it can be used as a type.

• Say we have an interface named Pet, and Dog and Cat
implement this interface…

1. Variable Declaration:

• Pet d = new Dog();

• Pet c = new Cat();

2. Parameters:

• public static void feedPet(Pet p) {…}

• Can call with any object of type Pet:

– feedPet(new Dog());

– feedPet(new Cat());

Interface Types can be used anywhere
that a class type is used.

(…continued from last slide)

3. Fields:

• private Pet pet;

4. Generic Type Parameters:

• ArrayList<Pet> pets = new ArrayList<Pet>();

• pets.add(new Dog());

• pets.add(new Cat());

Notation: In UML

• Closed triangle with a dashed line in

UML is an “is-a” relationship

• Read this as:

InterImpl is-an InterfaceName

Q2

Why is this OK?

Pet p = new Dog();
p.feed();
p = new Cat();
p.feed();
p = new Pet(); // NO!
• Any child type may be stored into a variable of a

parent type, but not the other way around.
– A Dog is a Pet, and a Cat is a Pet, but a Pet is not

required to be a Dog or a Cat.
– And how could you construct a Pet?

• But how does Java know which method
implementation to use?

Q3

Polymorphism! (A quick intro)

• Origin:
– Poly many
– Morphism shape

• Classes implementing an interface give many differently
“shaped” objects for the interface type

• Java knows what method implementation to use thanks to:
– Late Binding:

• choosing the right method based on the actual type of the implicit
parameter (variable before the dot) at run time

– For the p.feed() example:
• Java decides at runtime which implementation to use based on the

type of the object instance.
• The Dog’s feed method may specify dog food, and the Cat’s may

specify cat food.

Q4

Notation: In Code
public interface InterfaceName{

/**
* regular javadocs
*/
void methodName(int x, int y);

/**
* regular javadocs here
*/
int doSomething(Graphics2D g);

}

public class InterImpl implements InterfaceName {
…

}

interface, not class

No method
body, just a
semi-colon

Automatically
public, so we

don’t specify it

InterImpl promises to implement all the methods declared
in the InterfaceName interface

Refactoring to an Interface

• stringTransforms package

– Review the code in the stringTransforms package

– Attempt to refactor the given code using an
interface by thinking about what operation is
performed repeatedly

– There is a hint at the bottom if you’re not quite
sure where to start, but only use it if you need

How does all this help reuse?

• Can pass an instance of a class where an interface type is expected
– But only if the class implements the interface

• We could add new functions to a NumberSequence’s abilities
without changing the runner itself.
– Sort of like application “plug-ins”

• We can use a new TransformInterface without changing the method
that uses the TransformInterface instance

• Use interface types for field, method parameter, and return types
whenever possible. Like Pet instead of Dog, and List for ArrayList.
– List<Pet> pets= new ArrayList<Pet>();

